A. 剛性轉(zhuǎn)動(dòng)描述了微分單元體的方位變化,與變形位移一起構(gòu)成彈性體的變形;
B. 剛性轉(zhuǎn)動(dòng)分量描述的是一點(diǎn)的剛體轉(zhuǎn)動(dòng)位移,因此與彈性體的變形無關(guān);
C. 剛性轉(zhuǎn)動(dòng)位移也是位移的導(dǎo)數(shù),因此它描述了一點(diǎn)的變形;
D. 剛性轉(zhuǎn)動(dòng)分量可以確定彈性體的剛體位移。
您可能感興趣的試卷
你可能感興趣的試題
A. 由于幾何方程是由位移導(dǎo)數(shù)組成的,因此,位移的導(dǎo)數(shù)描述了物體的變形位移;
B. 幾何方程建立了位移與變形的關(guān)系,因此,通過幾何方程可以確定一點(diǎn)的位移。
C. 幾何方程建立了位移與變形的關(guān)系,因此,通過幾何方程可以確定一點(diǎn)的應(yīng)變分量。
D. 幾何方程是一點(diǎn)位移與應(yīng)變分量之間的唯一關(guān)系。
最新試題
三角形單元任意一條邊上的形函數(shù),與()有關(guān)。
在推導(dǎo)薄板彎曲的彈性曲面微分方程中,已經(jīng)考慮并完全滿足了()。
對(duì)于圓截面等直桿的扭轉(zhuǎn),材料力學(xué)與彈性力學(xué)得到的切應(yīng)力解答是相同的。
單元?jiǎng)偠染仃嚺c()無關(guān)。
當(dāng)不考慮體力時(shí),極坐標(biāo)中應(yīng)力函數(shù)必須滿足的條件有()。
已知在外力作用下處于靜力平衡狀態(tài)的彈性體,且位移邊界已知,則外力在虛位移上所做的虛功等于()。
在經(jīng)典能量原理中的可能狀態(tài)有兩類,它們是()。
下面()不屬于平面應(yīng)變問題。
彈性力學(xué)的研究方法是在彈性體的區(qū)域內(nèi)嚴(yán)格考慮三方面條件,建立三套基本方程,這三方面條件包括()。
在能量原理中,用能量形式來表示彈性體的本構(gòu)關(guān)系的是()。