最新試題
由原子激發(fā)態(tài)平均壽命估算該激發(fā)態(tài)能級(jí)的寬度時(shí),需要使用Heisenberg()不確定關(guān)系。
利用Schr?dinger方程求解Stark效應(yīng)簡(jiǎn)并微擾問(wèn)題,歸結(jié)為求解()矩陣的本征值。
已知W為對(duì)角化哈密頓量,o為任意物理量的算符,則能量表象的矩陣元(oW-Wo)nm為()。
?Heisenberg矩陣力學(xué)的力學(xué)量隨時(shí)間變化,而量子態(tài)不隨時(shí)間變化,由此可知Heisenberg矩陣力學(xué)實(shí)質(zhì)上是()繪景下能量表象的量子力學(xué)。
?Heisenberg用他的量子化條件研究一維簡(jiǎn)諧振動(dòng),得到一維諧振子的動(dòng)能和勢(shì)能之和只是量子數(shù)n的函數(shù),這說(shuō)明處于定態(tài)n的諧振子的總能量()。
?Bohm提出了簡(jiǎn)化版的量子態(tài)糾纏態(tài),即兩個(gè)自旋為()原子的糾纏態(tài)。
效仿Einstein的做法,Born把波函數(shù)也視為向?qū)?chǎng),該場(chǎng)決定了粒子在某一向?qū)窂降模ǎ?,向?qū)?chǎng)本身沒(méi)有能量和動(dòng)量。
?由de Broglie關(guān)系和()方程也能導(dǎo)出定態(tài)Schr?dinger方程。
?粒子的波函數(shù)為,則t時(shí)刻粒子出現(xiàn)在空間的概率為()。
Schr?dinger求解氫原子的定態(tài)Schr?dinger方程,得到了Bohr能級(jí)公式,他認(rèn)為量子化的本質(zhì)是微分方程的()問(wèn)題。