一商家銷售某種商品的價(jià)格滿足關(guān)系P=7-0.2x(萬元/噸),其中x為銷售量,該商品的成本函數(shù)為C=3x+1(萬元)。
(1)若每銷售一噸商品,政府要征稅t萬元,求該商家獲最大利潤時(shí)的銷售量;
(2)t為何值時(shí),政府稅收總額最大?
您可能感興趣的試卷
你可能感興趣的試題
最新試題
在三角形ABC中,∠BAC=90°,AB=AC,若點(diǎn)D在線段BC上,以AD為邊長作正方形ADEF,如圖1,易證∠AFC=∠ACB+∠DAC。(1)若點(diǎn)D在BC延長線上,其他條件不變,寫出∠AFC,∠ACB,∠DAC的關(guān)系,并結(jié)合圖2給出證明。(2)若點(diǎn)D在CB延長線上,其他條件不變,直接寫出∠AFC,∠ACB,∠DAC的關(guān)系式。
甲、乙兩人參加某電視臺(tái)舉辦的答題闖關(guān)游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨(dú)立作答,然后由乙回答剩余3道題,每人答對(duì)其中2道題就停止作答,即闖關(guān)成功,已知在6道備選題中,甲能答對(duì)其中的4道題,乙答對(duì)每道題的概率都是。(1)求甲、乙至少有一人闖關(guān)成功的概率;(2)設(shè)甲答對(duì)題目的個(gè)數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望。
已知數(shù)列{an}中,a1=1,且(1)求證:數(shù)列是等差數(shù)列;(2)求數(shù)列{an}的通項(xiàng)公式。
已知函數(shù)f(x)=x-alnx(a∈R)(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值。
高中"方程的根與函數(shù)的零點(diǎn)"(第一節(jié)課)設(shè)定的教學(xué)目標(biāo)如下:①通過對(duì)二次函數(shù)圖象的描繪,了解函數(shù)零點(diǎn)的概念,滲透由具體到抽象思想,領(lǐng)會(huì)函數(shù)零點(diǎn)與相應(yīng)方程實(shí)數(shù)根之間的關(guān)系,②理解提出零點(diǎn)概念的作用,溝通函數(shù)與方程的關(guān)系。③通過對(duì)現(xiàn)實(shí)問題的分析,體會(huì)用函數(shù)系統(tǒng)的角度去思考方程的思想,使學(xué)生理解動(dòng)與靜的辨證關(guān)系。掌握函數(shù)零點(diǎn)存在性的判斷。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo),設(shè)計(jì)一個(gè)問題引入,并說明設(shè)計(jì)意圖;(2)根據(jù)教學(xué)目標(biāo)①,設(shè)計(jì)問題鏈(至少包含三個(gè)問題),并說明設(shè)計(jì)意圖;(3)根據(jù)教學(xué)目標(biāo)③,給出至少一個(gè)實(shí)例和三個(gè)問題,并說明設(shè)計(jì)意圖;(4)確定本節(jié)課的教學(xué)重點(diǎn);(5)作為高中階段的基礎(chǔ)內(nèi)容,其難點(diǎn)是什么?(6)本節(jié)課的教學(xué)內(nèi)容對(duì)后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?
,(1)求An;(2)求(A+2E)n。
求.
如何理解高中數(shù)學(xué)課程的過程性目標(biāo)?
已知函數(shù)。(1)當(dāng)時(shí),求函數(shù)f(x)在[-2,2]上的最大值、最小值;(2)令,若g(x)在上單調(diào)遞增,求實(shí)數(shù)a的取值范圍。
請(qǐng)以"三角函數(shù)的積化和差與和差化積"為課題,完成下列教學(xué)設(shè)計(jì)。(1)教學(xué)目標(biāo);(2)教學(xué)重點(diǎn)、難點(diǎn);(3)教學(xué)過程(只要求寫出新課導(dǎo)入和新知探究、鞏固、應(yīng)用等)及設(shè)計(jì)意圖。