已知方程組AX=f,其中
(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。
(2)求出Jacobi迭代矩陣的譜半徑。
您可能感興趣的試卷
你可能感興趣的試題
最新試題
用歐拉法解初值問題y′=x2+100y2,y(0)=0.取步長(zhǎng)h=0.1,計(jì)算到x=0.3(保留到小數(shù)點(diǎn)后4位).
證明解y′=f(x,y)的差分公式是二階的,并求出局部截?cái)嗾`差的主項(xiàng).
設(shè)lj(j=0,1,…,n)為節(jié)點(diǎn)x0,x1,…xn的n次基函數(shù),則lj(xj)=()
已知由數(shù)據(jù)(0,0),(0.5,y),(1,3)和(2,2)構(gòu)造出的三次插值多項(xiàng)式P3(x)的x3的系數(shù)是6,試確定數(shù)據(jù)y。
設(shè)矩陣A=。則A的條件數(shù)Cond(A)2=()
求函數(shù)f(x)=cosxπ在指定區(qū)間[0,1]上對(duì)于Φ=span{1,x}的最佳逼近多項(xiàng)式。
分別用二階顯式阿當(dāng)姆斯方法和二階隱式阿當(dāng)姆斯方法解下列初值問題:y′=1-y,y(0)=0.取h=0.2,y0=0,y1=0.181,計(jì)算y(1.0)并與準(zhǔn)確解y=1-e-x相比較.
推導(dǎo)出以這3個(gè)點(diǎn)作為求積節(jié)點(diǎn)在[0,1]上的插值型求積公式。
初值問題y′=-100(y-x2)+2x,y(0)=1.用歐拉法求解,步長(zhǎng)h取什么范圍的值,才能使計(jì)算穩(wěn)定。
正方形的邊長(zhǎng)約為100cm,則正方形的邊長(zhǎng)誤差限不超過()cm才能使其面積誤差不超過1cm2。