粒子在一維勢場
中運(yùn)動,λ甚小,試求基態(tài)能量準(zhǔn)確到λ2的修正值以及λ應(yīng)滿足的條件。
您可能感興趣的試卷
你可能感興趣的試題
最新試題
?de Broglie認(rèn)為Bohr氫原子的軌道長度應(yīng)該是電子波長的()倍,由此導(dǎo)出角動量量子化,進(jìn)而得到氫原子的Bohr能級公式。
光量子的本質(zhì)是()電磁場。
?經(jīng)典儀器測量系統(tǒng)時(shí)會()得到系統(tǒng)的某個(gè)本征值,同時(shí)系統(tǒng)波函數(shù)也坍縮到系統(tǒng)相應(yīng)的這個(gè)本征態(tài)。
一維諧振子基態(tài)波函數(shù)為,式中,則諧振子在該態(tài)時(shí)勢能的平均值為()。
Schr?dinger求解氫原子的定態(tài)Schr?dinger方程,得到了Bohr能級公式,他認(rèn)為量子化的本質(zhì)是微分方程的()問題。
?de Broglie將在自身質(zhì)心系中的粒子視為簡諧振子,把質(zhì)心系和地面參考系之間的()變換代入簡諧振動的運(yùn)動學(xué)方程就得到de Broglie物質(zhì)波。
?由經(jīng)典物理的Newton定律和Maxwell電磁理論,原子會不穩(wěn)定的,電子()坍縮到原子核。
?Heisenberg用他的量子化條件研究一維簡諧振動,得到一維諧振子的動能和勢能之和只是量子數(shù)n的函數(shù),這說明處于定態(tài)n的諧振子的總能量()。
由原子激發(fā)態(tài)平均壽命估算該激發(fā)態(tài)能級的寬度時(shí),需要使用Heisenberg()不確定關(guān)系。
Einstein對比了短波低能量密度時(shí)的黑體輻射和n個(gè)原子組成的粒子體系的(),提出了光量子假設(shè)。