是厄密算符,則()
A.A
B.B
C.C
D.D
您可能感興趣的試卷
你可能感興趣的試題
波函數(shù)ψ和φ是平方可積函數(shù),則力學(xué)量算符為厄密算符的定義是()
A.A
B.B
C.C
D.D
在極坐標(biāo)系下,氫原子體系在不同方向上找到電子的幾率為()
A.A
B.B
C.C
D.D
在極坐標(biāo)系下,氫原子體系在不同球殼內(nèi)找到電子的幾率為()
A.A
B.B
C.C
D.D
線性諧振子的能量本征方程是()
A.A
B.B
C.C
D.D
線性諧振子的第一激發(fā)態(tài)的波函數(shù)為,其位置幾率分布最大處為()
A.A
B.B
C.C
D.D
最新試題
被激發(fā)到n=20激發(fā)態(tài)的氫原子退激時輻射出()種波長的譜線。(不考慮精細(xì)結(jié)構(gòu))
?由經(jīng)典物理的Newton定律和Maxwell電磁理論,原子會不穩(wěn)定的,電子()坍縮到原子核。
?Bohr互補(bǔ)性原理是哥本哈根解釋的兩個原理之一,依此原理經(jīng)典概念描述的相互矛盾的物理現(xiàn)象()出現(xiàn)在同一實(shí)驗(yàn)中。
?不考慮無微擾項(xiàng)時,氦原子兩個電子總的波函數(shù)是反對稱的,這樣兩個電子的空間波函數(shù)和自旋波函數(shù)就出現(xiàn)()種不同的情況。
Schr?dinger求解氫原子的定態(tài)Schr?dinger方程,得到了Bohr能級公式,他認(rèn)為量子化的本質(zhì)是微分方程的()問題。
當(dāng)α≠0,Ω≠0時,寫出能量本征值和相應(yīng)的本征態(tài)。
?Schr?dinger波動力學(xué)的力學(xué)量部隨時間變化,而量子態(tài)隨時間變化,由此可知Schr?dinger波動力學(xué)實(shí)質(zhì)上是()繪景下坐標(biāo)表象的量子力學(xué)。
效仿Einstein的做法,Born把波函數(shù)也視為向?qū)?,該場決定了粒子在某一向?qū)窂降模ǎ?,向?qū)霰旧頉]有能量和動量。
設(shè)電子處于動量為的態(tài),將哈密頓量中的作為微擾,寫出能量本征值和本征函數(shù)到一級近似。
一維運(yùn)動的粒子被束縛在0<x<a的范圍內(nèi),其波函數(shù)為,則粒子在0到a/2區(qū)域內(nèi)出現(xiàn)的概率為()。