A.根據(jù)內(nèi)容檢索
B.建模描述
C.預(yù)測(cè)建模
D.尋找模式和規(guī)則
您可能感興趣的試卷
你可能感興趣的試題
A.探索性數(shù)據(jù)分析
B.建模描述
C.預(yù)測(cè)建模
D.尋找模式和規(guī)則
A.頻繁模式挖掘
B.分類(lèi)和預(yù)測(cè)
C.數(shù)據(jù)預(yù)處理
D.數(shù)據(jù)流挖掘
以下兩種描述分別對(duì)應(yīng)哪兩種對(duì)分類(lèi)算法的評(píng)價(jià)標(biāo)準(zhǔn)?()
(1)警察抓小偷,描述警察抓的人中有多少個(gè)是小偷的標(biāo)準(zhǔn)。
(2)描述有多少比例的小偷給警察抓了的標(biāo)準(zhǔn)。
A.Precision,Recall
B.Recall,Precision
C.Precision,ROC
D.Recall,ROC
最新試題
如果P(A B)= P(A),則P(A∩B)= P(A)P(B)。
使用偏差較小的模型總是比偏差較大的模型更好。
數(shù)據(jù)存儲(chǔ)體系中并不牽扯計(jì)算機(jī)網(wǎng)絡(luò)這一環(huán)節(jié)。
數(shù)據(jù)收集中的拉模式需要通過(guò)定時(shí)的方式不斷地觸發(fā),才能源源不斷地獲取對(duì)應(yīng)的數(shù)據(jù)。
要將工作申請(qǐng)分為兩類(lèi),并使用密度估計(jì)來(lái)檢測(cè)離職申請(qǐng)人,我們可以使用生成分類(lèi)器。
給定用于2類(lèi)分類(lèi)問(wèn)題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類(lèi)精度。
選擇用于k均值聚類(lèi)的聚類(lèi)數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。
最大似然估計(jì)的一個(gè)缺點(diǎn)是,在某些情況下(例如,多項(xiàng)式分布),它可能會(huì)返回零的概率估計(jì)。
當(dāng)MAP中使用的先驗(yàn)是參數(shù)空間上的統(tǒng)一先驗(yàn)時(shí),MAP估計(jì)等于ML估計(jì)。
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過(guò)度擬合訓(xùn)練數(shù)據(jù)的潛在問(wèn)題。