A.連續(xù)性
B.維度
C.稀疏性
D.分辨率
E.相異性
您可能感興趣的試卷
你可能感興趣的試題
A.時(shí)序數(shù)據(jù)
B.序列數(shù)據(jù)
C.時(shí)間序列數(shù)據(jù)
D.事務(wù)數(shù)據(jù)
E.空間數(shù)據(jù)
A.不一致
B.重復(fù)
C.不完整
D.含噪聲
E.維度高
A.矩陣
B.平行坐標(biāo)系
C.星形坐標(biāo)
D.散布圖
E.Chernoff臉
A.忽略元組
B.使用屬性的平均值填充空缺值
C.使用一個(gè)全局常量填充空缺值
D.使用與給定元組屬同一類的所有樣本的平均值
E.使用最可能的值填充空缺值
A.統(tǒng)計(jì)
B.計(jì)算機(jī)組成原理
C.礦產(chǎn)挖掘
D.人工智能
最新試題
經(jīng)常跟管理層打交道并進(jìn)行有效地關(guān)于商業(yè)領(lǐng)域的討論有助于數(shù)據(jù)科學(xué)項(xiàng)目的成功。
小數(shù)據(jù)集的數(shù)據(jù)處理最好也由計(jì)算機(jī)手段來完成。
當(dāng)反向傳播算法運(yùn)行到達(dá)到最小值時(shí),無論初始權(quán)重是什么,總是會(huì)找到相同的解(即權(quán)重)。
數(shù)據(jù)壓縮與解壓縮可以使得數(shù)據(jù)處理的速度加快。
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓(xùn)練數(shù)據(jù)的潛在問題。
數(shù)據(jù)收集中的拉模式需要通過定時(shí)的方式不斷地觸發(fā),才能源源不斷地獲取對(duì)應(yīng)的數(shù)據(jù)。
使決策樹更深將確保更好的擬合度,但會(huì)降低魯棒性。
當(dāng)MAP中使用的先驗(yàn)是參數(shù)空間上的統(tǒng)一先驗(yàn)時(shí),MAP估計(jì)等于ML估計(jì)。
無論質(zhì)心的初始化如何,K-Means始終會(huì)給出相同的結(jié)果。
使用偏差較小的模型總是比偏差較大的模型更好。