從某校的全部學(xué)生中抽出30名進(jìn)行英語測(cè)驗(yàn),并進(jìn)行了t檢驗(yàn),結(jié)果如下。
能否推斷該校所有學(xué)生的英語平均成績(jī)達(dá)到了85分?您可能感興趣的試卷
你可能感興趣的試題
A.中位數(shù)檢驗(yàn)是一種兩獨(dú)立樣本的非參數(shù)檢驗(yàn)方法
B.中位數(shù)檢驗(yàn)是一種多獨(dú)立樣本的非參數(shù)檢驗(yàn)方法
C.中位數(shù)檢驗(yàn)使用的統(tǒng)計(jì)量是卡方統(tǒng)計(jì)量
D.中位數(shù)檢驗(yàn)中要求各組樣本中的個(gè)案相同
E.中位數(shù)檢驗(yàn)中要計(jì)算各變量值的秩
A.非參數(shù)檢驗(yàn)是統(tǒng)計(jì)推斷的基本內(nèi)容
B.在總體分布已知時(shí),才可以使用非參數(shù)檢驗(yàn)方法
C.非參數(shù)檢驗(yàn)是對(duì)總體均值、方差等推斷的方法
D.非參數(shù)檢驗(yàn)是對(duì)總體分布形態(tài)進(jìn)行推斷的方法
E.在總體分布未知時(shí)可以使用非參數(shù)檢驗(yàn)方法
A.控制變量不同水平下觀測(cè)變量各總體均值差異顯著
B.控制變量不同水平下的效應(yīng)同時(shí)為0
C.控制變量不同水平的變化沒有對(duì)觀測(cè)變量產(chǎn)生顯著影響
D.控制變量不同水平下的效應(yīng)不同時(shí)為0
E.控制變量不同水平下觀測(cè)變量各總體均值無顯著差異
A.兩個(gè)獨(dú)立樣本t檢驗(yàn)是檢驗(yàn)兩個(gè)總體的均值是否存在顯著差異
B.兩個(gè)獨(dú)立樣本t檢驗(yàn)要求樣本來自的總體服從或近似服從正態(tài)分布
C.兩個(gè)獨(dú)立樣本t檢驗(yàn)中兩組樣本的樣本數(shù)可以不等
D.兩個(gè)獨(dú)立樣本t檢驗(yàn)中的數(shù)據(jù)要存放于兩個(gè)數(shù)據(jù)文件中
E.兩個(gè)獨(dú)立樣本t檢驗(yàn)中的數(shù)據(jù)要存放于同一個(gè)數(shù)據(jù)文件的兩個(gè)變量中
最新試題
The number of phone calls arriving at a switchboard each hour has been recorded and the following frequency distribution has been developed.What is the approximate range of the number of phone calls arriving each hour?()
Descriptive statistics deals with methods of()
The number of class intervals in a frequency distribution is usually between ().
品合格率指標(biāo)是()
A student achieves an 82 on the first test in a statistics course. From this, she assumes that her average at the end of the semester (after other tests) will be about 82. This is an example of ().
某企業(yè)2018年技術(shù)工占50%,2019年新招收了一批學(xué)徒工,使學(xué)徒工的比重增加了10%。假定全廠各級(jí)工資水平均無變化,則2019年職工總平均工資將()
A cumulative frequency distribution would provide().
Simon Arnett, Director of Human Resources, is exploring the causes of employee absenteeism at Buderim Bottling during the last operating year (1 January 2005 to 31 December 2005). The average number of absences per employee, calculated from the personnel data of all employees, is a ().
Which of the following is not the goal of descriptive statistics?()
If the individual class frequency is divided by the total frequency, the result is the ().