您可能感興趣的試卷
你可能感興趣的試題
最新試題
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過(guò)度擬合訓(xùn)練數(shù)據(jù)的潛在問(wèn)題。
非結(jié)構(gòu)化數(shù)據(jù)也可以使用關(guān)系型數(shù)據(jù)庫(kù)來(lái)存儲(chǔ)。
支持向量機(jī)不適合大規(guī)模數(shù)據(jù)。
隨機(jī)梯度下降每次更新執(zhí)行的計(jì)算量少于批梯度下降。
數(shù)據(jù)存儲(chǔ)體系中并不牽扯計(jì)算機(jī)網(wǎng)絡(luò)這一環(huán)節(jié)。
根據(jù)數(shù)據(jù)科學(xué)家與數(shù)據(jù)工程師對(duì)于問(wèn)題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類(lèi),然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來(lái)進(jìn)行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對(duì)應(yīng)的存儲(chǔ)系統(tǒng)。
給定用于2類(lèi)分類(lèi)問(wèn)題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類(lèi)精度。
數(shù)據(jù)復(fù)制或者備份均是為了從提高數(shù)據(jù)并發(fā)這個(gè)角度來(lái)設(shè)計(jì)和實(shí)現(xiàn)的。
管理員不需要驗(yàn)證就可以訪問(wèn)數(shù)據(jù)存儲(chǔ)系統(tǒng)中的任何數(shù)據(jù),這符合數(shù)據(jù)安全的要求。
要將工作申請(qǐng)分為兩類(lèi),并使用密度估計(jì)來(lái)檢測(cè)離職申請(qǐng)人,我們可以使用生成分類(lèi)器。