設(shè)粒子處在一維無限深方勢(shì)阱中,
處于基態(tài)(n=1),求粒子的動(dòng)量分布。
您可能感興趣的試卷
你可能感興趣的試題
最新試題
被激發(fā)到n=20激發(fā)態(tài)的氫原子退激時(shí)輻射出()種波長的譜線。(不考慮精細(xì)結(jié)構(gòu))
?Heisenberg用他的量子化條件研究一維簡諧振動(dòng),得到一維諧振子的動(dòng)能和勢(shì)能之和只是量子數(shù)n的函數(shù),這說明處于定態(tài)n的諧振子的總能量()。
?Schr?dinger波動(dòng)力學(xué)的力學(xué)量部隨時(shí)間變化,而量子態(tài)隨時(shí)間變化,由此可知Schr?dinger波動(dòng)力學(xué)實(shí)質(zhì)上是()繪景下坐標(biāo)表象的量子力學(xué)。
已知W為對(duì)角化哈密頓量,o為任意物理量的算符,則能量表象的矩陣元(oW-Wo)nm為()。
效仿Einstein的做法,Born把波函數(shù)也視為向?qū)?,該場決定了粒子在某一向?qū)窂降模ǎ驅(qū)霰旧頉]有能量和動(dòng)量。
?不考慮無微擾項(xiàng)時(shí),氦原子兩個(gè)電子總的波函數(shù)是反對(duì)稱的,這樣兩個(gè)電子的空間波函數(shù)和自旋波函數(shù)就出現(xiàn)()種不同的情況。
一維諧振子基態(tài)波函數(shù)為,式中,則諧振子在該態(tài)時(shí)勢(shì)能的平均值為()。
?de Broglie認(rèn)為Bohr氫原子的軌道長度應(yīng)該是電子波長的()倍,由此導(dǎo)出角動(dòng)量量子化,進(jìn)而得到氫原子的Bohr能級(jí)公式。
一維運(yùn)動(dòng)的粒子被束縛在0<x<a的范圍內(nèi),其波函數(shù)為,則粒子在0到a/2區(qū)域內(nèi)出現(xiàn)的概率為()。
?由de Broglie關(guān)系和()方程也能導(dǎo)出定態(tài)Schr?dinger方程。