A.JP聚類擅長處理噪聲和離群點(diǎn),并且能夠處理不同大小、形狀和密度的簇
B.JP算法對高維數(shù)據(jù)效果良好,尤其擅長發(fā)現(xiàn)強(qiáng)相關(guān)對象的緊致簇
C.JP聚類是基于SNN相似度的概念
D.JP聚類的基本時間復(fù)雜度為O(m)
您可能感興趣的試卷
你可能感興趣的試題
A.概率
B.鄰近度
C.密度
D.聚類
A.STING
B.WaveCluster
C.MAFIA
D.BIRCH
A.當(dāng)簇只包含少量數(shù)據(jù)點(diǎn),或者數(shù)據(jù)點(diǎn)近似協(xié)線性時,混合模型也能很好地處理
B.混合模型比K均值或模糊c均值更一般,因為它可以使用各種類型的分布
C.混合模型很難發(fā)現(xiàn)不同大小和橢球形狀的簇
D.混合模型在有噪聲和離群點(diǎn)時不會存在問題
A.模糊c均值
B.EM算法
C.SOM
D.CLIQUE
A.CURE
B.DENCLUE
C.CLIQUE
D.OPOSSUM
最新試題
假設(shè)屬性的數(shù)量固定,則可以在時間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓(xùn)練數(shù)據(jù)的潛在問題。
根據(jù)數(shù)據(jù)科學(xué)家與數(shù)據(jù)工程師對于問題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類,然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來進(jìn)行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對應(yīng)的存儲系統(tǒng)。
當(dāng)MAP中使用的先驗是參數(shù)空間上的統(tǒng)一先驗時,MAP估計等于ML估計。
數(shù)據(jù)索引就像給每條數(shù)據(jù)裝了個信箱。
對于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對于這類數(shù)據(jù)的觀察和理解。
當(dāng)數(shù)據(jù)集標(biāo)簽錯誤的數(shù)據(jù)點(diǎn)時,隨機(jī)森林通常比AdaBoost更好。
最大似然估計的一個缺點(diǎn)是,在某些情況下(例如,多項式分布),它可能會返回零的概率估計。
使用偏差較小的模型總是比偏差較大的模型更好。
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時,我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓(xùn)練數(shù)據(jù)的可能性。