您可能感興趣的試卷
你可能感興趣的試題
最新試題
求矩陣的逆矩陣:。
某學(xué)校600名學(xué)生參加計(jì)算機(jī)應(yīng)用課程考試的成績(jī)近似地服從N(75,82)試估計(jì)成績(jī)?cè)赱90,100],[70,80),[0,60)分?jǐn)?shù)段內(nèi)的人數(shù)。
若按總分從高到低錄取,試分析一總分為237分的考生被錄取為正式工的可能性。
設(shè)隨機(jī)變量ξ的分布密度為p(x)=ce-x,-∞<x<+∞,求常數(shù)c,E(ξ),D(ξ)和P(-1<ξ<1)。
某尋呼臺(tái)在1分鐘內(nèi)接到的呼喚次數(shù)服從參數(shù)λ=5的泊松分布,求在1分鐘內(nèi)接到6次呼喚的概率及接到呼喚不超過10次的概率。
一顆均勻的骰子連續(xù)擲100次,求擲出點(diǎn)數(shù)之和在300到400之間的概率。
某車間有200臺(tái)機(jī)床獨(dú)立工作,每臺(tái)機(jī)床在工作時(shí)間內(nèi)有70%的時(shí)間開動(dòng),每臺(tái)機(jī)床工作時(shí)需耗電1kw,問應(yīng)供應(yīng)多少電力才能有99.9%的把握保證該車間正常生產(chǎn)。
取自某校畢業(yè)生的一個(gè)100人的簡(jiǎn)單隨機(jī)樣本,有48人年收入不少于3萬元,估計(jì)該校畢業(yè)生中年收入不少于3萬元的所有畢業(yè)生的百分比。
求下列矩陣的秩:
根據(jù)長(zhǎng)期資料的分析,知道某種鋼筋的強(qiáng)度服從正態(tài)分布,今隨機(jī)抽取6根鋼筋進(jìn)行強(qiáng)度試驗(yàn),測(cè)得強(qiáng)度(單位Mpa)為48.5,49,53.5,49.5,56.0,52.5。問:能否認(rèn)為該種鋼筋的平均強(qiáng)度為52.0Mpa?(α=0.052)