A.輪廓系數(shù)
B.共性分類相關(guān)系數(shù)
C.熵
D.F度量
您可能感興趣的試卷
你可能感興趣的試題
A.規(guī)則集的表達(dá)能力遠(yuǎn)不如決策樹好
B.基于規(guī)則的分類器都對(duì)屬性空間進(jìn)行直線劃分,并將類指派到每個(gè)劃分
C.無法被用來產(chǎn)生更易于解釋的描述性模型
D.非常適合處理類分布不平衡的數(shù)據(jù)集
A.構(gòu)造網(wǎng)絡(luò)費(fèi)時(shí)費(fèi)力
B.對(duì)模型的過分問題非常魯棒
C.貝葉斯網(wǎng)絡(luò)不適合處理不完整的數(shù)據(jù)
D.網(wǎng)絡(luò)結(jié)構(gòu)確定后,添加變量相當(dāng)麻煩
A.F1度量
B.召回率(recall)
C.精度(precision)
D.真正率(ture positive rate,TPR)
A.預(yù)測(cè)準(zhǔn)確度
B.召回率
C.模型描述的簡(jiǎn)潔度
D.計(jì)算復(fù)雜度
A.其支持度小于閾值
B.都是不讓人感興趣的
C.包含負(fù)模式和負(fù)相關(guān)模式
D.對(duì)異常數(shù)據(jù)項(xiàng)敏感
最新試題
數(shù)據(jù)收集中的拉模式需要通過定時(shí)的方式不斷地觸發(fā),才能源源不斷地獲取對(duì)應(yīng)的數(shù)據(jù)。
數(shù)據(jù)存儲(chǔ)體系中并不牽扯計(jì)算機(jī)網(wǎng)絡(luò)這一環(huán)節(jié)。
數(shù)據(jù)復(fù)制或者備份均是為了從提高數(shù)據(jù)并發(fā)這個(gè)角度來設(shè)計(jì)和實(shí)現(xiàn)的。
對(duì)于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對(duì)于這類數(shù)據(jù)的觀察和理解。
非結(jié)構(gòu)化數(shù)據(jù)也可以使用關(guān)系型數(shù)據(jù)庫來存儲(chǔ)。
假設(shè)屬性的數(shù)量固定,則可以在時(shí)間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。
通過統(tǒng)計(jì)學(xué)可以推測(cè)擲兩個(gè)撒子同時(shí)選中3點(diǎn)的幾率。
任務(wù)調(diào)度系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標(biāo)從目標(biāo)源獲取數(shù)據(jù)。
當(dāng)MAP中使用的先驗(yàn)是參數(shù)空間上的統(tǒng)一先驗(yàn)時(shí),MAP估計(jì)等于ML估計(jì)。