單項(xiàng)選擇題有矩A3*2,B2*3,C3*3下列運(yùn)算正確的是()。

A.AC
B.ABC
C.AB-BC
D.AC+BC


您可能感興趣的試卷

你可能感興趣的試題

1.單項(xiàng)選擇題設(shè)a,b是兩個(gè)非零向量,則下面說法正確的是()。

A.若|a+b|=|a|-|b|,則a⊥b
B.若a⊥b,則|a+b|=|a|-|b|
C.若|a+b|=|a|-|b|,則存在實(shí)數(shù)λ,使得a=λb
D.若存在實(shí)數(shù)λ,使得a=λb,則|a+b|=|a|-|b|

4.單項(xiàng)選擇題

,則sin2θ=()。

A.
B.
C.
D.

5.單項(xiàng)選擇題下列命題中,假命題為()。

A.存在四邊相等的四邊形不是正方形
B.z1,z10∈C,為實(shí)數(shù)的充分必要條件是z1、z2互為共軛復(fù)數(shù)
C.若x,y∈R,且x+y>2,則x,y至少有一個(gè)大于1
D.對(duì)于任意n∈N,Cn0+Cn1,…+Cnn:都是偶數(shù)

最新試題

已知向量a,b,滿足a=b=1,且,其中k>0。(1)試用k表示a·b,并求出a·b的最大值及此時(shí)a與b的夾角θ的值;(2)當(dāng)a·b取得最大值時(shí),求實(shí)數(shù)λ,使a+λb的值最小,并對(duì)這一結(jié)論作出幾何解釋。

題型:?jiǎn)柎痤}

已知函數(shù)。(1)當(dāng)時(shí),求函數(shù)f(x)在[-2,2]上的最大值、最小值;(2)令,若g(x)在上單調(diào)遞增,求實(shí)數(shù)a的取值范圍。

題型:?jiǎn)柎痤}

已知,,(1)求tan2α的值:(2)求β。

題型:?jiǎn)柎痤}

案例:某教師在對(duì)基本初等函數(shù)進(jìn)行教學(xué)時(shí),給學(xué)生出了如下一道練習(xí)題:?jiǎn)栴}:(1)指出該生解題過程中的錯(cuò)誤,分析其錯(cuò)誤原因;(2)給出你的正確解答;(3)指出你在解題時(shí)運(yùn)用的數(shù)學(xué)思想方法。

題型:?jiǎn)柎痤}

一商家銷售某種商品的價(jià)格滿足關(guān)系P=7-0.2x(萬元/噸),其中x為銷售量,該商品的成本函數(shù)為C=3x+1(萬元)。(1)若每銷售一噸商品,政府要征稅t萬元,求該商家獲最大利潤(rùn)時(shí)的銷售量;(2)t為何值時(shí),政府稅收總額最大?

題型:?jiǎn)柎痤}

在高中數(shù)學(xué)課程中為什么要講微積分初步?

題型:?jiǎn)柎痤}

案例:下面是一位老師在講"簡(jiǎn)單幾何體的三視圖"的教學(xué)片斷,請(qǐng)閱讀后回答問題:創(chuàng)設(shè)問題情境,從學(xué)生熟悉的古詩入手,引出課題。多媒體顯示:題西林壁--蘇軾橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同。不識(shí)廬山真面目,只緣身在此山中。師:大家看大屏幕,一起朗讀這首詩。師:哪位同學(xué)能說說蘇東坡是怎樣觀察廬山的嗎?都有什么感覺?生:橫看,側(cè)看,遠(yuǎn)看,近看,高看,低看。都得到不同的效果。師:回答得非常好。可能有些同學(xué)會(huì)納悶,今天老師上數(shù)學(xué)課怎么會(huì)念起古詩來?其實(shí),這首詩隱含著一些數(shù)學(xué)知識(shí)。它教會(huì)了我們?cè)鯓佑^察物體,這也是我們這節(jié)課將要學(xué)習(xí)的內(nèi)容--簡(jiǎn)單組合體的三視圖(寫板書)。問題:(1)該教師的課堂引入有什么特色,對(duì)教學(xué)有什么好處?(2)簡(jiǎn)單談?wù)剶?shù)學(xué)教學(xué)過程中怎樣調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情激發(fā)學(xué)習(xí)興趣。

題型:?jiǎn)柎痤}

已知直線l:ax+y=1在矩陣對(duì)應(yīng)的變換作用下變?yōu)橹本€l′:x+by=1。(1)求實(shí)數(shù)a,b的值;(2)若點(diǎn)P(x0,y0),在直線l上,且,求點(diǎn)P的坐標(biāo)。

題型:?jiǎn)柎痤}

為什么在數(shù)學(xué)教學(xué)中要貫徹理論與實(shí)際相結(jié)合的原則?

題型:?jiǎn)柎痤}

如何處理面向全體學(xué)生與關(guān)注學(xué)生個(gè)體差異的關(guān)系?

題型:?jiǎn)柎痤}