請以"三角函數(shù)的積化和差與和差化積"為課題,完成下列教學(xué)設(shè)計(jì)。
(1)教學(xué)目標(biāo);
(2)教學(xué)重點(diǎn)、難點(diǎn);
(3)教學(xué)過程(只要求寫出新課導(dǎo)入和新知探究、鞏固、應(yīng)用等)及設(shè)計(jì)意圖。
您可能感興趣的試卷
你可能感興趣的試題
最新試題
如何理解高中數(shù)學(xué)課程的過程性目標(biāo)?
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系。已知點(diǎn)A的極坐標(biāo)為,直線l的極坐標(biāo)方程為,且點(diǎn)A在直線l上。(1)求α的值及直線ι的直角坐標(biāo)方程:(2)圓c的參數(shù)方程為,試判斷直線l與圓C的位置關(guān)系。
論述實(shí)施合作學(xué)習(xí)應(yīng)注意的幾個問題。
高中"方程的根與函數(shù)的零點(diǎn)"(第一節(jié)課)設(shè)定的教學(xué)目標(biāo)如下:①通過對二次函數(shù)圖象的描繪,了解函數(shù)零點(diǎn)的概念,滲透由具體到抽象思想,領(lǐng)會函數(shù)零點(diǎn)與相應(yīng)方程實(shí)數(shù)根之間的關(guān)系,②理解提出零點(diǎn)概念的作用,溝通函數(shù)與方程的關(guān)系。③通過對現(xiàn)實(shí)問題的分析,體會用函數(shù)系統(tǒng)的角度去思考方程的思想,使學(xué)生理解動與靜的辨證關(guān)系。掌握函數(shù)零點(diǎn)存在性的判斷。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo),設(shè)計(jì)一個問題引入,并說明設(shè)計(jì)意圖;(2)根據(jù)教學(xué)目標(biāo)①,設(shè)計(jì)問題鏈(至少包含三個問題),并說明設(shè)計(jì)意圖;(3)根據(jù)教學(xué)目標(biāo)③,給出至少一個實(shí)例和三個問題,并說明設(shè)計(jì)意圖;(4)確定本節(jié)課的教學(xué)重點(diǎn);(5)作為高中階段的基礎(chǔ)內(nèi)容,其難點(diǎn)是什么?(6)本節(jié)課的教學(xué)內(nèi)容對后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?
高中"等差數(shù)列"設(shè)定的教學(xué)目標(biāo)如下:①通過實(shí)例,理解等差數(shù)列的概念,探索并掌握等差數(shù)列的通項(xiàng)公式;②能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系并能用有關(guān)知識解決相應(yīng)的問題,體會等差數(shù)列與一次函數(shù)的關(guān)系:③讓學(xué)生對日常生活中的實(shí)際問題進(jìn)行分析,引導(dǎo)學(xué)生通過觀察,推導(dǎo),歸納抽象出等差數(shù)列的概念:由學(xué)生建立等差數(shù)列模型用相關(guān)知識解決一些簡單的問題,進(jìn)行等差數(shù)列通項(xiàng)公式應(yīng)用的實(shí)踐操作并在操作過程中,通過類比函數(shù)概念、性質(zhì)、表達(dá)式得到對等差數(shù)列相應(yīng)問題的研究。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo)①,給出至少三個實(shí)例,并說明設(shè)計(jì)意圖;(2)根據(jù)教學(xué)目標(biāo)②,設(shè)計(jì)至少兩個問題,讓學(xué)生用等差數(shù)列求解,并說明設(shè)計(jì)意圖;(3)確定本節(jié)課的教學(xué)重點(diǎn);(4)作為高中階段的重點(diǎn)內(nèi)容,其難點(diǎn)是什么?(5)本節(jié)課的教學(xué)內(nèi)容對后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?
案例:下面是一位老師在講"簡單幾何體的三視圖"的教學(xué)片斷,請閱讀后回答問題:創(chuàng)設(shè)問題情境,從學(xué)生熟悉的古詩入手,引出課題。多媒體顯示:題西林壁--蘇軾橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同。不識廬山真面目,只緣身在此山中。師:大家看大屏幕,一起朗讀這首詩。師:哪位同學(xué)能說說蘇東坡是怎樣觀察廬山的嗎?都有什么感覺?生:橫看,側(cè)看,遠(yuǎn)看,近看,高看,低看。都得到不同的效果。師:回答得非常好??赡苡行┩瑢W(xué)會納悶,今天老師上數(shù)學(xué)課怎么會念起古詩來?其實(shí),這首詩隱含著一些數(shù)學(xué)知識。它教會了我們怎樣觀察物體,這也是我們這節(jié)課將要學(xué)習(xí)的內(nèi)容--簡單組合體的三視圖(寫板書)。問題:(1)該教師的課堂引入有什么特色,對教學(xué)有什么好處?(2)簡單談?wù)剶?shù)學(xué)教學(xué)過程中怎樣調(diào)動學(xué)生的學(xué)習(xí)熱情激發(fā)學(xué)習(xí)興趣。
已知函數(shù)。(1)當(dāng)時(shí),求函數(shù)f(x)在[-2,2]上的最大值、最小值;(2)令,若g(x)在上單調(diào)遞增,求實(shí)數(shù)a的取值范圍。
在三角形ABC中,∠BAC=90°,AB=AC,若點(diǎn)D在線段BC上,以AD為邊長作正方形ADEF,如圖1,易證∠AFC=∠ACB+∠DAC。(1)若點(diǎn)D在BC延長線上,其他條件不變,寫出∠AFC,∠ACB,∠DAC的關(guān)系,并結(jié)合圖2給出證明。(2)若點(diǎn)D在CB延長線上,其他條件不變,直接寫出∠AFC,∠ACB,∠DAC的關(guān)系式。
案例:某教師在對根與系數(shù)關(guān)系綜合運(yùn)用教學(xué)時(shí),給學(xué)生出了如下一道練習(xí)題:設(shè)α、β是方程x2-2kx+k+6=0的兩個實(shí)根,則(α-1)2+(β-1)2的最小值是()。A.B.8C.18D.不存在某學(xué)生的解答過程如下:利用一元二次方程根與系數(shù)的關(guān)系易得:α+β=2k,αβ=k+6所以。故選A。問題:(1)指出該生解題過程中的錯誤,分析其錯誤原因;(2)給出你的正確解答;(3)指出你在解題時(shí)運(yùn)用的數(shù)學(xué)思想方法。
已知a=1,b=2。(1)若a∥b,求a·b;(2)若a、b的夾角為60°,求a+b;(3)若a-b與a垂直,求當(dāng)k為何值時(shí),(ka-b)⊥(a+2b)。