A.精度
B.Rand統(tǒng)計(jì)量
C.Jaccard系數(shù)
D.召回率
您可能感興趣的試卷
你可能感興趣的試題
A.輪廓系數(shù)
B.共性分類(lèi)相關(guān)系數(shù)
C.熵
D.F度量
A.規(guī)則集的表達(dá)能力遠(yuǎn)不如決策樹(shù)好
B.基于規(guī)則的分類(lèi)器都對(duì)屬性空間進(jìn)行直線劃分,并將類(lèi)指派到每個(gè)劃分
C.無(wú)法被用來(lái)產(chǎn)生更易于解釋的描述性模型
D.非常適合處理類(lèi)分布不平衡的數(shù)據(jù)集
A.構(gòu)造網(wǎng)絡(luò)費(fèi)時(shí)費(fèi)力
B.對(duì)模型的過(guò)分問(wèn)題非常魯棒
C.貝葉斯網(wǎng)絡(luò)不適合處理不完整的數(shù)據(jù)
D.網(wǎng)絡(luò)結(jié)構(gòu)確定后,添加變量相當(dāng)麻煩
A.F1度量
B.召回率(recall)
C.精度(precision)
D.真正率(ture positive rate,TPR)
A.預(yù)測(cè)準(zhǔn)確度
B.召回率
C.模型描述的簡(jiǎn)潔度
D.計(jì)算復(fù)雜度
最新試題
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過(guò)度擬合訓(xùn)練數(shù)據(jù)的潛在問(wèn)題。
任務(wù)調(diào)度系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標(biāo)從目標(biāo)源獲取數(shù)據(jù)。
數(shù)據(jù)收集中的拉模式需要通過(guò)定時(shí)的方式不斷地觸發(fā),才能源源不斷地獲取對(duì)應(yīng)的數(shù)據(jù)。
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時(shí),我們幾乎總是可以通過(guò)允許更多隱藏狀態(tài)來(lái)增加訓(xùn)練數(shù)據(jù)的可能性。
假設(shè)屬性的數(shù)量固定,則可以在時(shí)間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類(lèi)器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
隨機(jī)梯度下降每次更新執(zhí)行的計(jì)算量少于批梯度下降。
根據(jù)數(shù)據(jù)科學(xué)家與數(shù)據(jù)工程師對(duì)于問(wèn)題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類(lèi),然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來(lái)進(jìn)行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對(duì)應(yīng)的存儲(chǔ)系統(tǒng)。
當(dāng)反向傳播算法運(yùn)行到達(dá)到最小值時(shí),無(wú)論初始權(quán)重是什么,總是會(huì)找到相同的解(即權(quán)重)。
由于決策樹(shù)學(xué)會(huì)了對(duì)離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類(lèi),因此它們不可能過(guò)度擬合。
公司內(nèi)部收集的數(shù)據(jù)不存在需要考慮數(shù)據(jù)隱私的環(huán)節(jié)。