問答題
已知單調(diào)連續(xù)函數(shù)y=f(x)的如下數(shù)值表.用插值法求f(x)=0.5在區(qū)間(0.1,0.4)內(nèi)的根的近似值α(小數(shù)點(diǎn)后保留五位)。
您可能感興趣的試卷
最新試題
證明解y′=f(x,y)的差分公式是二階的,并求出局部截?cái)嗾`差的主項(xiàng).
題型:?jiǎn)柎痤}
令,試證是在[0,1]上帶權(quán)的正交多項(xiàng)式,并求。
題型:?jiǎn)柎痤}
f(x)=x7+x4+3x+1,求。
題型:?jiǎn)柎痤}
分別用二階顯式阿當(dāng)姆斯方法和二階隱式阿當(dāng)姆斯方法解下列初值問題:y′=1-y,y(0)=0.取h=0.2,y0=0,y1=0.181,計(jì)算y(1.0)并與準(zhǔn)確解y=1-e-x相比較.
題型:?jiǎn)柎痤}
求方程的剛性比,用四階R-K方法求解時(shí),最大步長(zhǎng)能取多少?
題型:?jiǎn)柎痤}
試導(dǎo)出計(jì)算的Newton迭代格式,使公式中(對(duì)xn)既無開方,又無除法運(yùn)算,并討論其收斂性。
題型:?jiǎn)柎痤}
用歐拉法求解,步長(zhǎng)h取什么范圍的值,才能使計(jì)算穩(wěn)定.
題型:?jiǎn)柎痤}
給定如下方程組:判定Jacobi和Gauss-Seidel方法的收斂性。
題型:?jiǎn)柎痤}
用歐拉法解初值問題y′=x2+100y2,y(0)=0.取步長(zhǎng)h=0.1,計(jì)算到x=0.3(保留到小數(shù)點(diǎn)后4位).
題型:?jiǎn)柎痤}
證明=△yn-△y0。
題型:?jiǎn)柎痤}