最新試題
設(shè)矩陣A=。則A的條件數(shù)Cond(A)2=()
題型:填空題
用改進(jìn)歐拉法和梯形法解初值問題y′=x2+x-y,y(0)=0取步長(zhǎng)h=0.1,計(jì)算到x=0.5,并與準(zhǔn)確解y=-e-x+x2-x-1相比較.
題型:?jiǎn)柎痤}
已知由數(shù)據(jù)(0,0),(0.5,y),(1,3)和(2,2)構(gòu)造出的三次插值多項(xiàng)式P3(x)的x3的系數(shù)是6,試確定數(shù)據(jù)y。
題型:?jiǎn)柎痤}
當(dāng)f(x)=x時(shí),求證Bn(f,x)=x。
題型:?jiǎn)柎痤}
設(shè)f(x)∈C2[a,b]且f(a)=f(b)=0,求證:。
題型:?jiǎn)柎痤}
證明解y′=f(x,y)的差分公式是二階的,并求出局部截?cái)嗾`差的主項(xiàng).
題型:?jiǎn)柎痤}
給定如下方程組:判定Jacobi和Gauss-Seidel方法的收斂性。
題型:?jiǎn)柎痤}
設(shè)f(x)=x4,試?yán)美窭嗜詹逯涤囗?xiàng)定理給出f(x)以-1,0,1,2為節(jié)點(diǎn)的插值多項(xiàng)式p(x)。
題型:?jiǎn)柎痤}
試證明線性二步法當(dāng)b≠-1時(shí)方法為二階,當(dāng)b=-1時(shí)方法為三階.
題型:?jiǎn)柎痤}
給定數(shù)據(jù)表如下;試求三次樣條插值,并滿足條件:。
題型:?jiǎn)柎痤}