問答題
下列矩陣能否分解為L(zhǎng)U(其中L為單位下三角陣,U為上三角陣)?若能分解,那么分解是否唯一。
您可能感興趣的試卷
最新試題
設(shè)f(x)=x4,試?yán)美窭嗜詹逯涤囗?xiàng)定理給出f(x)以-1,0,1,2為節(jié)點(diǎn)的插值多項(xiàng)式p(x)。
題型:?jiǎn)柎痤}
給定數(shù)據(jù)表如下;試求三次樣條插值,并滿足條件:。
題型:?jiǎn)柎痤}
求函數(shù)f(x)=1/x在指定區(qū)間[1,3]上對(duì)于Φ=span{1,x}的最佳逼近多項(xiàng)式。
題型:?jiǎn)柎痤}
用所求公式計(jì)算
題型:?jiǎn)柎痤}
推導(dǎo)出以這3個(gè)點(diǎn)作為求積節(jié)點(diǎn)在[0,1]上的插值型求積公式。
題型:?jiǎn)柎痤}
求函數(shù)f(x)=cosxπ在指定區(qū)間[0,1]上對(duì)于Φ=span{1,x}的最佳逼近多項(xiàng)式。
題型:?jiǎn)柎痤}
用改進(jìn)歐拉法和梯形法解初值問題y′=x2+x-y,y(0)=0取步長(zhǎng)h=0.1,計(jì)算到x=0.5,并與準(zhǔn)確解y=-e-x+x2-x-1相比較.
題型:?jiǎn)柎痤}
試證明線性二步法當(dāng)b≠-1時(shí)方法為二階,當(dāng)b=-1時(shí)方法為三階.
題型:?jiǎn)柎痤}
證明解y′=f(x,y)的差分公式是二階的,并求出局部截?cái)嗾`差的主項(xiàng).
題型:?jiǎn)柎痤}
用歐拉法解初值問題y′=x2+100y2,y(0)=0.取步長(zhǎng)h=0.1,計(jì)算到x=0.3(保留到小數(shù)點(diǎn)后4位).
題型:?jiǎn)柎痤}