=().
A.O
B.1
C.∞
D.2
您可能感興趣的試卷
最新試題
請(qǐng)以"三角函數(shù)的積化和差與和差化積"為課題,完成下列教學(xué)設(shè)計(jì)。(1)教學(xué)目標(biāo);(2)教學(xué)重點(diǎn)、難點(diǎn);(3)教學(xué)過程(只要求寫出新課導(dǎo)入和新知探究、鞏固、應(yīng)用等)及設(shè)計(jì)意圖。
一商家銷售某種商品的價(jià)格滿足關(guān)系P=7-0.2x(萬元/噸),其中x為銷售量,該商品的成本函數(shù)為C=3x+1(萬元)。(1)若每銷售一噸商品,政府要征稅t萬元,求該商家獲最大利潤(rùn)時(shí)的銷售量;(2)t為何值時(shí),政府稅收總額最大?
案例:某教師在對(duì)基本初等函數(shù)進(jìn)行教學(xué)時(shí),給學(xué)生出了如下一道練習(xí)題:?jiǎn)栴}:(1)指出該生解題過程中的錯(cuò)誤,分析其錯(cuò)誤原因;(2)給出你的正確解答;(3)指出你在解題時(shí)運(yùn)用的數(shù)學(xué)思想方法。
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系。已知點(diǎn)A的極坐標(biāo)為,直線l的極坐標(biāo)方程為,且點(diǎn)A在直線l上。(1)求α的值及直線ι的直角坐標(biāo)方程:(2)圓c的參數(shù)方程為,試判斷直線l與圓C的位置關(guān)系。
設(shè)f(x),g(x)在[0,1]上的導(dǎo)數(shù)連續(xù),且f(0)=0,f′(x)≥0,g′(x)≥0。證明:對(duì)任何a∈[O,1],有
求.
為什么在數(shù)學(xué)教學(xué)中要貫徹理論與實(shí)際相結(jié)合的原則?
如何理解高中數(shù)學(xué)課程的過程性目標(biāo)?
已知等差數(shù)列{an}滿足:a3=7,a5+a7=26。{an}的前n項(xiàng)和為S。(1)求an及Sn;(2)令.求數(shù)列{bn}的前n項(xiàng)和Tn。
高中"等差數(shù)列"設(shè)定的教學(xué)目標(biāo)如下:①通過實(shí)例,理解等差數(shù)列的概念,探索并掌握等差數(shù)列的通項(xiàng)公式;②能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系并能用有關(guān)知識(shí)解決相應(yīng)的問題,體會(huì)等差數(shù)列與一次函數(shù)的關(guān)系:③讓學(xué)生對(duì)日常生活中的實(shí)際問題進(jìn)行分析,引導(dǎo)學(xué)生通過觀察,推導(dǎo),歸納抽象出等差數(shù)列的概念:由學(xué)生建立等差數(shù)列模型用相關(guān)知識(shí)解決一些簡(jiǎn)單的問題,進(jìn)行等差數(shù)列通項(xiàng)公式應(yīng)用的實(shí)踐操作并在操作過程中,通過類比函數(shù)概念、性質(zhì)、表達(dá)式得到對(duì)等差數(shù)列相應(yīng)問題的研究。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo)①,給出至少三個(gè)實(shí)例,并說明設(shè)計(jì)意圖;(2)根據(jù)教學(xué)目標(biāo)②,設(shè)計(jì)至少兩個(gè)問題,讓學(xué)生用等差數(shù)列求解,并說明設(shè)計(jì)意圖;(3)確定本節(jié)課的教學(xué)重點(diǎn);(4)作為高中階段的重點(diǎn)內(nèi)容,其難點(diǎn)是什么?(5)本節(jié)課的教學(xué)內(nèi)容對(duì)后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?