已知命題,則是()。
A.A
B.B
C.C
D.D
您可能感興趣的試卷
你可能感興趣的試題
設(shè)函數(shù)f(x0)在x處可導(dǎo),則(),
A.-f′(x0)
B.f′(-x0)
C.f′(x0)
D.2f′(x0)
A.AC
B.ABC
C.AB-BC
D.AC+BC
A.若|a+b|=|a|-|b|,則a⊥b
B.若a⊥b,則|a+b|=|a|-|b|
C.若|a+b|=|a|-|b|,則存在實(shí)數(shù)λ,使得a=λb
D.若存在實(shí)數(shù)λ,使得a=λb,則|a+b|=|a|-|b|
在直角三角形ABC中,點(diǎn)D是斜邊AB的中點(diǎn),點(diǎn)P為線段CD的中點(diǎn),則()。
A.2
B.4
C.5
D.10
A.28
B.76
C.123
D.199
最新試題
在三角形ABC中,∠BAC=90°,AB=AC,若點(diǎn)D在線段BC上,以AD為邊長作正方形ADEF,如圖1,易證∠AFC=∠ACB+∠DAC。(1)若點(diǎn)D在BC延長線上,其他條件不變,寫出∠AFC,∠ACB,∠DAC的關(guān)系,并結(jié)合圖2給出證明。(2)若點(diǎn)D在CB延長線上,其他條件不變,直接寫出∠AFC,∠ACB,∠DAC的關(guān)系式。
已知橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn)D,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:(1)求C1、C2的標(biāo)準(zhǔn)方程:(2)請(qǐng)問是否存在直線L滿足條件:①過C2的焦點(diǎn)F;②與C1交不同兩點(diǎn)M、N,且滿足若存在,求出直線L的方程;若不存在,說明理由。
請(qǐng)以"直線與平面平行的判定"為課題,完成下列教學(xué)設(shè)計(jì)。(1)教學(xué)目標(biāo)(2)本節(jié)課的教學(xué)重、難點(diǎn)(3)寫出新課引入和新知探究、鞏固、應(yīng)用等及設(shè)計(jì)意圖
高中"等差數(shù)列"設(shè)定的教學(xué)目標(biāo)如下:①通過實(shí)例,理解等差數(shù)列的概念,探索并掌握等差數(shù)列的通項(xiàng)公式;②能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系并能用有關(guān)知識(shí)解決相應(yīng)的問題,體會(huì)等差數(shù)列與一次函數(shù)的關(guān)系:③讓學(xué)生對(duì)日常生活中的實(shí)際問題進(jìn)行分析,引導(dǎo)學(xué)生通過觀察,推導(dǎo),歸納抽象出等差數(shù)列的概念:由學(xué)生建立等差數(shù)列模型用相關(guān)知識(shí)解決一些簡單的問題,進(jìn)行等差數(shù)列通項(xiàng)公式應(yīng)用的實(shí)踐操作并在操作過程中,通過類比函數(shù)概念、性質(zhì)、表達(dá)式得到對(duì)等差數(shù)列相應(yīng)問題的研究。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo)①,給出至少三個(gè)實(shí)例,并說明設(shè)計(jì)意圖;(2)根據(jù)教學(xué)目標(biāo)②,設(shè)計(jì)至少兩個(gè)問題,讓學(xué)生用等差數(shù)列求解,并說明設(shè)計(jì)意圖;(3)確定本節(jié)課的教學(xué)重點(diǎn);(4)作為高中階段的重點(diǎn)內(nèi)容,其難點(diǎn)是什么?(5)本節(jié)課的教學(xué)內(nèi)容對(duì)后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?
一圓與y軸相切,圓心在x-3y=0上,在y=x上截得的弦長為,求圓的方程。
論述實(shí)施合作學(xué)習(xí)應(yīng)注意的幾個(gè)問題。
請(qǐng)簡要描述數(shù)學(xué)應(yīng)用意識(shí)及推理能力的主要表現(xiàn)。
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系。已知點(diǎn)A的極坐標(biāo)為,直線l的極坐標(biāo)方程為,且點(diǎn)A在直線l上。(1)求α的值及直線ι的直角坐標(biāo)方程:(2)圓c的參數(shù)方程為,試判斷直線l與圓C的位置關(guān)系。
求.
如何處理面向全體學(xué)生與關(guān)注學(xué)生個(gè)體差異的關(guān)系?