為求方程在x0=1.5附近的一個(gè)根,設(shè)將方程改寫(xiě)成下列等價(jià)形式,并建立相應(yīng)的迭代公式:
1),迭代公式
2),迭代公式
3),迭代公式
試分析每種迭代公式的收斂性,并選取一種公式求出具有四位有效數(shù)字的近似值。
您可能感興趣的試卷
最新試題
分別用二階顯式阿當(dāng)姆斯方法和二階隱式阿當(dāng)姆斯方法解下列初值問(wèn)題:y′=1-y,y(0)=0.取h=0.2,y0=0,y1=0.181,計(jì)算y(1.0)并與準(zhǔn)確解y=1-e-x相比較.
推導(dǎo)出以這3個(gè)點(diǎn)作為求積節(jié)點(diǎn)在[0,1]上的插值型求積公式。
指明插值求積公式所具有的代數(shù)精確度。
用歐拉法解初值問(wèn)題y′=x2+100y2,y(0)=0.取步長(zhǎng)h=0.1,計(jì)算到x=0.3(保留到小數(shù)點(diǎn)后4位).
要使求積公式具有2次代數(shù)精確度,則x1=(),A1=()
用改進(jìn)歐拉法和梯形法解初值問(wèn)題y′=x2+x-y,y(0)=0取步長(zhǎng)h=0.1,計(jì)算到x=0.5,并與準(zhǔn)確解y=-e-x+x2-x-1相比較.
設(shè)lj(j=0,1,…,n)為節(jié)點(diǎn)x0,x1,…xn的n次基函數(shù),則lj(xj)=()
證明解y′=f(x,y)的差分公式是二階的,并求出局部截?cái)嗾`差的主項(xiàng).
求方程的剛性比,用四階R-K方法求解時(shí),最大步長(zhǎng)能取多少?
求函數(shù)f(x)=cosxπ在指定區(qū)間[0,1]上對(duì)于Φ=span{1,x}的最佳逼近多項(xiàng)式。