分別利用下面四個(gè)點(diǎn)的Lagrange插值多項(xiàng)式和Newton插值多項(xiàng)式N3(x)計(jì)算L3(0.5)及N3(-0.5)
先求Lagrange插值多項(xiàng)式
您可能感興趣的試卷
你可能感興趣的試題
最新試題
求函數(shù)f(x)=ex在指定區(qū)間[0,1]上對(duì)于Φ=span{1,x}的最佳逼近多項(xiàng)式。
推導(dǎo)出以這3個(gè)點(diǎn)作為求積節(jié)點(diǎn)在[0,1]上的插值型求積公式。
設(shè)矩陣A=。則A的條件數(shù)Cond(A)2=()
正方形的邊長(zhǎng)約為100cm,則正方形的邊長(zhǎng)誤差限不超過(guò)()cm才能使其面積誤差不超過(guò)1cm2。
已知由數(shù)據(jù)(0,0),(0.5,y),(1,3)和(2,2)構(gòu)造出的三次插值多項(xiàng)式P3(x)的x3的系數(shù)是6,試確定數(shù)據(jù)y。
求函數(shù)f(x)=1/x在指定區(qū)間[1,3]上對(duì)于Φ=span{1,x}的最佳逼近多項(xiàng)式。
用改進(jìn)歐拉法和梯形法解初值問題y′=x2+x-y,y(0)=0取步長(zhǎng)h=0.1,計(jì)算到x=0.5,并與準(zhǔn)確解y=-e-x+x2-x-1相比較.
設(shè)f(x)=x4,試?yán)美窭嗜詹逯涤囗?xiàng)定理給出f(x)以-1,0,1,2為節(jié)點(diǎn)的插值多項(xiàng)式p(x)。
用歐拉法解初值問題y′=x2+100y2,y(0)=0.取步長(zhǎng)h=0.1,計(jì)算到x=0.3(保留到小數(shù)點(diǎn)后4位).
用歐拉法求解,步長(zhǎng)h取什么范圍的值,才能使計(jì)算穩(wěn)定.