A.(1,2)
B.(1,-2)
C.(-1,2)
D.(-1,-2)
您可能感興趣的試卷
你可能感興趣的試題
A.4πS
B.(1+4π)S
C.(2+4π)S
D.(3+4π)S
函數(shù)是()。
A.非奇非偶函數(shù)
B.僅有最小值的奇函數(shù)
C.僅有最大值的偶函數(shù)
D.既有最大值又有最小值的偶函數(shù)
設(shè)隨機(jī)變量X1,X2,……,Xn(n>1)獨(dú)立分布,且方差σ2>0,記,則與X1的相關(guān)系數(shù)為()。
A.-1
B.O
C.
D.1
A.AB為正交矩陣
B.A+B為正交矩陣
C.ATB為正交矩陣
D.AB-1為正交矩陣
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
最新試題
已知直線l:ax+y=1在矩陣對應(yīng)的變換作用下變?yōu)橹本€l′:x+by=1。(1)求實(shí)數(shù)a,b的值;(2)若點(diǎn)P(x0,y0),在直線l上,且,求點(diǎn)P的坐標(biāo)。
已知,,(1)求tan2α的值:(2)求β。
一商家銷售某種商品的價格滿足關(guān)系P=7-0.2x(萬元/噸),其中x為銷售量,該商品的成本函數(shù)為C=3x+1(萬元)。(1)若每銷售一噸商品,政府要征稅t萬元,求該商家獲最大利潤時的銷售量;(2)t為何值時,政府稅收總額最大?
如何處理面向全體學(xué)生與關(guān)注學(xué)生個體差異的關(guān)系?
高中"集合與函數(shù)概念實(shí)習(xí)作業(yè)"設(shè)定的教學(xué)目標(biāo)如下:①了解函數(shù)概念的形成、發(fā)展的歷史以及在這個過程中起重大作用的歷史事件和人物;②體驗(yàn)合作學(xué)習(xí)的方式,通過合作學(xué)習(xí)品嘗分享獲得知識的快樂;③在合作形式的小組學(xué)習(xí)活動中培養(yǎng)學(xué)生的領(lǐng)導(dǎo)意識、社會實(shí)踐技能和民主價值觀。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo),設(shè)計一個合理的課堂準(zhǔn)備;(2)確定本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn);(3)給出本節(jié)課的教學(xué)過程。
設(shè)f(x),g(x)在[0,1]上的導(dǎo)數(shù)連續(xù),且f(0)=0,f′(x)≥0,g′(x)≥0。證明:對任何a∈[O,1],有
已知函數(shù)f(x)=x-alnx(a∈R)(1)當(dāng)a=2時,求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值。
論述實(shí)施合作學(xué)習(xí)應(yīng)注意的幾個問題。
設(shè)二次函數(shù)f(x)=ax2+bx+c(a>O),方程f(x)-x=O的兩個根x1,x2滿足。(1)當(dāng)x∈(0,x1)時,證明x;(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,證明。
高中"隨機(jī)抽樣"設(shè)定的教學(xué)目標(biāo)如下:①通過對具體的案例分析,逐步學(xué)會從現(xiàn)實(shí)生活中提出具有一定價值的統(tǒng)計問題;②結(jié)合具體的實(shí)際問題情境,理解隨機(jī)抽樣的必要性和重要性;③以問題鏈的形式深刻理解樣本的代表性。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo)①,設(shè)計至少兩個問題,并說明設(shè)計意圖;(2)根據(jù)教學(xué)目標(biāo)②,給出至少兩個實(shí)例,并說明設(shè)計意圖;(3)根據(jù)教學(xué)目標(biāo)③,設(shè)計問題鏈(至少包含兩個問題),并說明設(shè)計意圖;(4)相對義務(wù)教育階段的統(tǒng)計教學(xué),本節(jié)課的教學(xué)重點(diǎn)是什么?(5)作為高中階段的起始課,其難點(diǎn)是什么?(6)本節(jié)課的教學(xué)內(nèi)容對后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?