問(wèn)答題
令║·║是Rn(或Cn)上的任意一種范數(shù),而P是任意非奇異實(shí)(或復(fù))矩陣,定義范數(shù),證明。
您可能感興趣的試卷
最新試題
用歐拉法求解,步長(zhǎng)h取什么范圍的值,才能使計(jì)算穩(wěn)定.
題型:?jiǎn)柎痤}
用迭代法解線性方程組Ax=b時(shí),迭代格式收斂的充分必要條件()是或()。
題型:填空題
求函數(shù)f(x)=1/x在指定區(qū)間[1,3]上對(duì)于Φ=span{1,x}的最佳逼近多項(xiàng)式。
題型:?jiǎn)柎痤}
正方形的邊長(zhǎng)約為100cm,則正方形的邊長(zhǎng)誤差限不超過(guò)()cm才能使其面積誤差不超過(guò)1cm2。
題型:填空題
已知由數(shù)據(jù)(0,0),(0.5,y),(1,3)和(2,2)構(gòu)造出的三次插值多項(xiàng)式P3(x)的x3的系數(shù)是6,試確定數(shù)據(jù)y。
題型:?jiǎn)柎痤}
給定如下方程組:判定Jacobi和Gauss-Seidel方法的收斂性。
題型:?jiǎn)柎痤}
f(x)=x7+x4+3x+1,求。
題型:?jiǎn)柎痤}
設(shè)f(x)=x4,試?yán)美窭嗜詹逯涤囗?xiàng)定理給出f(x)以-1,0,1,2為節(jié)點(diǎn)的插值多項(xiàng)式p(x)。
題型:?jiǎn)柎痤}
定義內(nèi)積(f,g)=,試在H1=中尋求對(duì)于f(x)=x的最佳平方逼近多項(xiàng)式p(x)。
題型:?jiǎn)柎痤}
試導(dǎo)出計(jì)算的Newton迭代格式,使公式中(對(duì)xn)既無(wú)開(kāi)方,又無(wú)除法運(yùn)算,并討論其收斂性。
題型:?jiǎn)柎痤}